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Aroma Discrimination by Pattern Recognition Analysis of Responses 
from Semiconductor Gas Sensor Array 

Tetsuo Aishima 
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A semiconductor gas sensor array was applied to discriminating coffee aromas, essential oils, and volatile 
compounds with different functional groups. To standardize sample introduction and to remove excess 
ethanol from volatile mixtures, headspace concentration utilizing a porous polymer trap was incorporated 
into the sensing system. Distinctive differences were not observed among response patterns of samples 
due to the nonselectivity of semiconductor gas sensors. Pattern recognition techniques such as dis- 
criminant analysis and cluster analysis were applied to the normalized response patterns. Two ground 
coffees, Coffea arabica and C. robusta, and freeze-dried and spray-dried commercial instant coffees 
were clearly separated by cluster analysis and linear discriminant analysis. A combination of three 
sensors was sufficient to perfectly discriminate the four coffee samples. Two clusters corresponding 
to a citrus group and other fruits were shown by cluster analysis of essential oils. Clustering of compounds 
was partly based on their chemical structure. 

INTRODUCTION 
Aroma analysis by using capillary gas chromatography 

(GC) is an established methodology in food analysis. 
Chemometric pattern recognition techniques have been 
frequently applied to  discriminating and to assigning food 
samples on the basis of their GC patterns for quality 
assurance purposes. However, GC analysis is not suitable 
to continuously monitor aroma quality in production 
process due to its inherent batchwise and differential (not 
integral) properties. Before pattern recognition analysis 
is applied to integrate information useful for sample 
assignment on a computer, intensive works are needed to 
feed a data matrix of GC profiles into a computer due to 
complicated GC patterns in food aromas. 

However, the mammalian olfactory system can dis- 
criminate aromas without separating mixtures into indi- 
vidual compounds. Signals sent from receptor cells a t  the 
olfactory system seem to be decoded at  the brain by using 
a kind of pattern recognition (Moulton, 1963). Recently 
several attempts of constructing aroma-sensing systems, 
i.e., the so-called "artificial nose" (Persaud and Pelosi, 
1985), have been made by utilizing various gas sensors. 
Metal oxide semiconductor sensors (Persaud and Dodd, 
1982; Oishi et al., 1988; Abe et  al., 1989; Weimer et  al., 
19901, surface-acoustic wave (SAW) sensors (Rose-Pehrs- 
son et al., 1988) and quartz-resonator sensors (Ema et  al., 
1989) seem potential methods. Although every sensor has 
its own advantages and disadvantages, there are not such 
sensors that can show perfect selectivity to specific 
compounds or a group of compounds. Pattern recognition 
of the responses from a multisensor array was incorporated 
into every analytical procedure due to the nonselectivity 
of gas sensors. However, until now, most efforts have been 
focused on detecting specific gases or hazardous com- 
pounds on the basis of their response patterns (Abe et  al., 
1989; Rose-Pehrsson et al., 1988; Weimar et al., 1990). 
From the viewpoint of aroma analysis, discriminating a 
particular gas mixture from other mixtures is essential. 

As the first step for developing a simple aroma- 
monitoring system, pattern recognition analysis for re- 
sponses to food aromas from a gas sensor array was 
attempted by using gas sensors. Although selectivity is 
not necessarily high, an array composed of six semicon- 
ductor gas sensors was applied to this study due to their 
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durability, high sensitivity for most reducing compounds, 
and insensitivity to water vapor (Figaro Gas Sensor for 
Industrial Use, 1985). A semiautomatic headspace con- 
centrator was incorporated into the sensing system to 
standardize the aroma introduction process and to  remove 
excess ethanol from headspace volatiles of samples. 
Pattern recognition techniques were applied to discrim- 
inate the resulting response patterns from the sensor array. 

EXPERIMENTAL PROCEDURES 

Gas-Sensing System. The whole scheme of the gas sensing 
system is shown in Figure 1. TGS semiconductor gas sensors 
were courtesy of Figaro Sensor Inc. (Minoo, Osaka, Japan). All 
sensors used are commercially available. Although distinctive 
selectivity has not been materialized, properties of gas sensors 
are somewhat controlled by doping trace amounts of noble metals. 
The properties of the six gas sensors used for making a sensor 
array are shown in Table I (Figaro Cas Sensor for  Industrial 
Use, 1985). One sensor array was installed in the three-necked 
5-L sample flask, and another array was used as reference sensors. 
The circuit voltage for all sensors was kept at ca. 2 V. Heater 
temperature was kept around 350 "C during the sensing period. 
The resistance decreased when reducing gas, Le., aroma com- 
pounds, contacted at the surface of the gas sensors. Amplified 
differences between sample sensors and reference sensors were 
recorded both by recorders and by an IBM PC through an A/D 
converter. After each measurement was finished, the flask was 
ventilated with air purified through charcoal and silicagel columns 
until responses decreased to the blank level. 

Materials. Coffee beans (Coffea arabica and Coffea robusta) 
were courtesy of Tokyo Allied Coffee Roasting Co., Ltd. (Tokyo, 
Japan). Spray-dried and freeze-dried instant coffees were 
purchased from a local market. Essential oils dissolved in eth- 
anol were courtesy of Soda Aromatic Co. Ltd. (Tokyo, Japan). 
Compounds purchased from Tokyo Kasei Kogyo Co., Ltd. (Tokyo, 
Japan), were used without further purification. 

Sample Treatment for Sensing, A Tekmar LSC 2000 
semiautomatic headspace concentrator was used for the pre- 
treatment of sample aroma. The conditions for sample treatment 
were fixed for every sample. Sample aroma was purged with Nz 
gas for 15 min at 40 mL/min at room temperature (ca. 25 "C). 
The volatiles trapped on a mixture (ca. 150 mg) of Tenax TA and 
silica gel were dry-purged with Nz gas for 35 min at 40 mL/min. 
Aroma desorption from the trap was performed at 180 "C for 4 
min. The desorbed aroma was introduced into the flask with Nz 
gas at 40 mL/min through a fused silica capillary column (0.53 
mm id.) transfer line heated at 100 "C. The tip of the transfer 

0 1991 American Chemical Society 



Aroma Dlscrlmlnatlon by Semiconductor Gas Sensor Array 

F l  

I l l  1 - 1  * I 

U U  IR.1.r.nc.l I I 
amplifier 

Recorders 

renmorr 
TGS8 13 
TGS8 12 
TGS7 1 1 
TGSBOO 
TGS815D 

Figure 1. Diagram of aroma-sensing system with gas sensor 
array. 

Table I. Six Semiconductor Gas Sensors Used for a 
Gas-Sensing Array 

no. 
1 
2 
3 
4 
5 
6 

- sensor 
TGS812 
TGS813 
TGS711 
TGS800 
TGS815D 
TGS712D 

circuit 
voltage 

1.7 
1.8 
2.2 
1.5 
1.8 
1.7 

heater 
voltage objective gases 

4.4 alcohols, organic solvents 
4.4 general combustive gases 
5.4 carbon monoxide 
4.4 general gases 
4.4 general combustive gases 
4.4 carbon monoxide 

line was only inserted into the flask through a septum during the 
desorption step and then extracted. The purging was started 
immediately after 5 g of a coffee sample was put into the sample 
flask. Repeated measurements were performed by renewing 
samples. In essential oils and volatile compounds, an arbitrary 
amount (1-5 pL) was spotted on a strip (0.7 X 3.0 cm) of filter 
paper by using a microsyringe. The strip of spotted filter paper 
was inserted into the flask, and the purging was started 
immediately. 

Aroma Extraction. Aroma extraction of 5 g of a coffee sample 
in 500 mL of water was performed by using a conventional 
simultaneous distillation-extraction method for 2 h with 15 mL 
of dichloromethane containing 280 ppm of vanillin as the internal 
standard for GC analysis. The extract was concentrated to ca. 
50 pL with a Kuderna-Danish concentrator and a following purge 
with a N2 gas stream. 

Gas Chromatographic Analysis. One microliter of the 
concentrate was injected into a Shimadzu GC-SA gas chromato- 
graph equipped with FID detectors. A fused silica capillary 
column (30 m X 0.25 mm i.d.) coated with Supelcowax 10 (0.25 
pm, Supelco Inc., Bellefonte, PA) was used. A split-type injection 
was used, and the split ratio was 60:l. The linear velocity of 
helium carrier gas was 24 cm/s. The column temperature was 
programmed from 50 to 220 "C at 3 "C/min. The temperatures 
of the detector and injection port were kept at 250 "C. 

Pattern Recognition. Response heights from the blank level 
at 8, 16, and 24 min after sample introduction were measured 
and averaged. Responses of six sensors were logarithmically 
transformed to linearize them for the concentration of aroma. 
Then each transformed response was normalized as the ratio to 
the total of six sensor responses to eliminate effects of absolute 
amounts of volatiles on pattern recognition. Thus, each sample 
is expressed as a point in a six-dimensional vector space. Mul- 
tivariate analysis, cluster analysis, and linear discriminant analysis 
(LDA) were performed by SPSS PC+ V3.0 programs (Norusis, 
1988) on an IBM PS/55 5551T system. 

RESULTS 

Sensor Responses. Typical recorder responses from 
six TGS sensors to C. arabica are shown in Figure 2. 
Attenuation of recorders was arbitrarily adjusted to  make 
every signal within the recording limits. After sample 
introduction into the flask, sensors soon started respond- 
ing. The response patterns of some sensors declined after 
showing initial humps as typically shown by TGS813 in 
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Figure 2. Responses of six TGS gas sensors for the aroma of C. 
arabica. 

Table 11. Correlation Coefficients of Sensor Responses for 
Coffee Samples 

sensor 
TGS- TGS- 

sensor 812 813 
TGS812 1.000 0.966** 
TGS813 1.000 
TGS711 
TGS8OO 
TGS815D 
TGS712D 

**P < 0.001 (n  = 60). 

TGS- TGS- TGS- 
711 800 815D 

0.969** 0.965** 0.985** 
0.904** 0.912** 0.983** 
1.000 0.975** 0.954** 

1.000 0.946** 
1.000 

TGS- 
712D 

0.990** 
0.962** 
0.979** 
0.983** 
0.987** 
1.OOO 

Figure 2. The humps were not included into the variables 
for the subsequent pattern recognition because the shapes 
of humps changed in repeated measurements even for the 
same sample. This inconsistency seems to derive from 
the injection conditions of sample volatiles as well as sensor 
properties. The direction of the tip of the transfer line 
was not strictly controlled when desorbed volatiles were 
introduced into the flask; the humps did not seem to reflect 
quality of sample aroma. Some other sensors showed 
stable plateau patterns as typically shown by TGS812 in 
Figure 2. All subsequent calculations were performed on 
the basis of the mean heights of responses measured a t  8, 
16, and 24 min after sample introduction. 

The correlation coefficients for six sensors were calcu- 
lated on the basis of 60 responses from coffee samples 
(Table 11). All correlation coefficients were highly sig- 
nificant, and the highest correlation, 0.990, was found 
between TGS812 and TGS712D. Even the lowest com- 
bination was high, i.e., 0.904, for responses from TGS813 
and TGS711. Thus, strong duplication of information in 
the responses from nonselective sensors was suggested. 

Widely known GC profiles and total peak areas of flavors 
in a specific food indicate quality and quantity of their 
aromas, respectively. Some attempts utilizing pattern 
recognition analysis for discriminating coffee varieties have 
been successful (Liardon et  al., 1984). Great differences 
in aroma quantities of ground coffees and instant coffees 
are clearly shown by their GC data (Figure 3). However, 
differences in their GC patterns were not so apparent as 
their quantity differences. 

Means (f), standard deviations (s), and coefficients of 
variations (CV = lOOs /%)  were calculated for response 
heights of 15 repeated measurementa in every coffee sample 
as shown in Table 111. All responses show a quantitatively 
similar tendency to the total volatiles obtained from GC 
analysis shown in Figure 3. CV decreased considerably 
by normalizing responses. Each response was normalized 
as the ratio to the total of six sensors, and the resulting 
patterns for four coffee samples are shown in Figure 4. 
Four response patterns are rather similar to one another, 
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Figure 3. Gas chromatograms of coffee samples. Numbers in parentheses indicate total volatiles (total area/area of internal standard 
peak indicated by asterisk). 

but as long as the repeatability is reliable enough, pattern 
recognition analysis can be applied to such a data set. 

Pattern Recognition of Coffee Samples. Cluster 
analysis was applied to the normalized data matrix of 
sensor responses. The resulting dendrogram shown in 
Figure 5 suggested clear separation of four groups. First, 
responses from four coffee samples fused into their 
exclusive clusters. Then each of the two ground coffee 
clusters and two instant coffee clusters fused into their 
larger clusters, respectively. 

Stepwise LDA was applied to the data matrix of coffee 
samples by using Wilks' X as a criterion for the variable 
selection. The summary of LDA shown in Table IV 
suggests that TGS812 is the most effective sensor to 
discriminate coffee aromas. By use of TGS812 alone, 78 % 
correct sample classification was attained. When infor- 
mation from TGS813 was added a t  step 2, correct 
classification was improved to 96.7 % . Perfectly correct 
classification was attained by adding TGSSOO and 

TGS815D into the set of discriminant variables a t  steps 
3 and 4, respectively. Thus, only three or four sensors are 
sufficient to discriminate two ground coffees and two 
instant coffees. Canonical scores were calculated on the 
basis of responses from TGS812, TGS813, TGS800, and 
TGS815D and are shown in Figure 6. Clear separation of 
four groups is observed in the resulting scatter plot. 
However, the existence of two groups corresponding to 
the ground coffees and instant coffees is also indicated. 

Essential Oils and Compounds. The diversity in 
response patterns for both essential oils and compounds 
was more apparent due to their inherent differences in 
components and chemical structure. Responses of 14 
different essential oils were analyzed by cluster analysis 
(Figure 7). Two large clusters, Le., citrus and other fruits, 
are observed. Two essential oils of peach and of apple do 
not make their exclusive clusters. As is well-known, there 
is not any statistical criterion to assess the appropriateness 
in the clustering obtained from conventional cluster 
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Table 111. Basic Statistics of Sensor Responses to Coffee 
Samples 

sensor 

25- 

2 0 .  

1 5 '  

C 
I 

is 
10- 

TGS- TGS- TGS- TGS- TGS- TGS- 
coffee 812 813 711 800 815D 712D 

mean 157.8 129.4 736.0 363.1 224.5 581.4 
SD 25.4 20.3 123.0 65.2 32.0 91.4 
cv, % 16.1 15.7 16.8 17.9 14.3 15.7 

mean 179.1 183.8 705.2 399.1 273.2 667.2 
SD 19.4 30.0 65.1 58.4 33.6 70.0 
cv, % 10.8 16.3 9.2 14.6 12.3 10.5 

mean 65.3 47.1 253.9 173.8 78.0 224.2 
SD 6.4 4.1 27.3 28.8 6.9 22.1 
cv, o/n 9.7 8.7 10.8 10.8 8.9 9.9 

mean 45.5 37.9 168.9 111.4 56.3 161.3 
SD 7.0 5.4 32.9 23.8 9.3 26.7 
cv, YO 15.3 14.2 19.5 21.4 16.6 16.5 

C. arablca C. robusta 

C. arabica (n = 15) 

C. robusta (n = 15) 

freeze-dried (n = 15) 

spray-dried (n = 15) 

Freeze dried Spray dried 

Figure 4. Radar charts of six gas sensors for coffee aromas. 

0 'I 11111111222222223333333344444444 hh 
c. arablca c. robusta Frees* dried spray drled 

Figure 5. Clustering of coffee samples based on responses from 
six sensors. 

analysis, but a t  least classification of citrus and other fruits 
seems to be acceptable on the basis of their aroma 
characteristics. 

Next, a similar approach was applied for different 
volatile chemicals. Differences in sensory properties of 
single compounds are usually very conspicuous according 
to their chemical structure. Successful discrimination of 
volatile compounds based on multisensor systems has 
already been reported (Persaud and Dodd, 1982; Abe et 
al., 1989). In this study cluster analysis was applied to the 
data matrix obtained from the arbitrarily selected 24 
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Table IV. Summary of Stepwise Linear Discriminant 
Analysis Applied for Sensor Responses to coffee Samples 

755 

Wilks' h correct 5% 
no. entered F (significance) (wrong/total) 
1 TGS812 226.0 0.076 (0.OOO) 78.3 (13/60) 
2 TGS813 52.7 0.020 (0.OOO) 96.7 (2/60) 
3 TGS800 8.8 0.013 (0.OOO) 100 (0/60) 
4 TGS815D 2.9 0.011 (0.OOO) 100 (0/60) 
5 TGS712D 1.3 0.011 (0.OOO) 98.3 (1/60) 

(y I Spray dried C. roburta 1 
4 
4 

44  
4 * 4 4  

4 4 4 4  
4 4  

3338 3 
33% 

3 3  
Freeze dried 

2 

22s 2 
2 2 2 2 2 2  

1 3 3  
$1 1 

11 1 1 
1 C. arabica 

Group centroid 

-4 0 4 
Canonical varlable 1 

Figure 6. Canonical plot of coffee samples based on responses 
of TGS812, TGS813, TGS800, and TGS815D sensors. 

5 1  I h l  

Figure 7. Clustering of essential oils based on responses from 
six sensors. 
compounds as shown in Figure 8. Some of the structurally 
similar compounds, such as pyrazines, terpenes, terpene 
alcohols, and aliphatic alcohols, made their clusters. 
However, whole clustering cannot necessarily be explained 
in terms of chemical structure or aroma characteristics of 
samples. 

Other combinations of semiconductor gas sensors are 
now being tested for aroma sensing in our laboratory. In 
the near future more logical clustering results may be 
obtained by finding more appropriate combinations of 
gas sensors. 

DISCUSSION 
Some research groups have already reported successful 

results on discriminating particular compounds in gas 
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other sensors, Le., long durability, insensitivity to moisture, 
and economy (Figaro Gas Sensor forlndustr ial  Use, 1985). 
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Figure  8. Clustering of compounds based on responses from six 
sensors. 

mixtures. Ema et al. (1989) succeeded in aroma discrim- 
ination of liquors using a six quartz-resonator sensor array 
and neural-network pattern recognition. However, sub- 
traction of sensor signals to the same content of ethanol 
from the responses to liquors was needed to attain good 
classification. By incorporating the concentrating step 
utilizing porous polymers, we can easily avoid effects of 
ethanol vapor from essential oils and examine whether 
response patterns from semiconductor gas sensors can 
really be discriminated statistically. However, of course, 
we cannot construct an on-line aroma-monitoring system 
as long as porous polymers are used. So far, it seems very 
difficult to develop sensors that are selectively insensitive 
only to ethanol vapor. Ethanol is the most abundant 
volatile compound in many foods and is also artificially 
added as a preservative for foods. 

Although ordinary gas sensors are nonselective in nature, 
there are four possible ways to increase selectivity to 
semiconductor gas sensors: the use of catalysts and 
promoters, the use of temperature control, the use of 
specific surface additives, and the use of filters (Morrison, 
1987). Incorporating concentration with porous polymers 
corresponds to the use of filters. Incorporating pattern 
recognition may be needed for aroma discrimination as 
long as required selectivity cannot be materialized in gas 
sensors. 

As clearly shown in LDA, aroma discrimination based 
on sensor responses is much simpler than those using GC 
data matrix. Of course, from such discrimination, we 
cannot obtain detailed information concerning aroma 
compounds, such as which compounds contribute to the 
discrimination. At this point predicting the future of an 
aroma-sensing system is not easy, but applying semicon- 
ductor gas sensors to constructing an artificial nose seems 
a potential methodology because of their advantages over 
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